Lab 2 - In-Class Lab: Mob Programming
Lab 2 - In-Class Lab: Mob Programming
The follow code is the original code that moves a 5×5 graphic diagonally across the screen.
; ; draw-image-subroutine.6502 ; ; This is a routine that can place an arbitrary ; rectangular image on to the screen at given ; coordinates. ; ; Chris Tyler 2024-09-17 ; Licensed under GPLv2+ ; ; ; The subroutine is below starting at the ; label "DRAW:" ; ; Test code for our subroutine ; Moves an image diagonally across the screen ; Zero-page variables define XPOS $20 define YPOS $21 START: ; Set up the width and height elements of the data structure LDA #$05 STA $12 ; IMAGE WIDTH STA $13 ; IMAGE HEIGHT ; Set initial position X=Y=0 LDA #$00 STA XPOS STA YPOS ; Main loop for diagonal animation MAINLOOP: ; Set pointer to the image ; Use G_O or G_X as desired ; The syntax #<LABEL returns the low byte of LABEL ; The syntax #>LABEL returns the high byte of LABEL LDA #<G_O STA $10 LDA #>G_O STA $11 ; Place the image on the screen LDA #$10 ; Address in zeropage of the data structure LDX XPOS ; X position LDY YPOS ; Y position JSR DRAW ; Call the subroutine ; Delay to show the image LDY #$00 LDX #$50 DELAY: DEY BNE DELAY DEX BNE DELAY ; Set pointer to the blank graphic LDA #<G_BLANK STA $10 LDA #>G_BLANK STA $11 ; Draw the blank graphic to clear the old image LDA #$10 ; LOCATION OF DATA STRUCTURE LDX XPOS LDY YPOS JSR DRAW ; Increment the position INC XPOS INC YPOS ; Continue for 29 frames of animation LDA #28 CMP XPOS BNE MAINLOOP ; Repeat infinitely JMP START ; ========================================== ; ; DRAW :: Subroutine to draw an image on ; the bitmapped display ; ; Entry conditions: ; A - location in zero page of: ; a pointer to the image (2 bytes) ; followed by the image width (1 byte) ; followed by the image height (1 byte) ; X - horizontal location to put the image ; Y - vertical location to put the image ; ; Exit conditions: ; All registers are undefined ; ; Zero-page memory locations define IMGPTR $A0 define IMGPTRH $A1 define IMGWIDTH $A2 define IMGHEIGHT $A3 define SCRPTR $A4 define SCRPTRH $A5 define SCRX $A6 define SCRY $A7 DRAW: ; SAVE THE X AND Y REG VALUES STY SCRY STX SCRX ; GET THE DATA STRUCTURE TAY LDA $0000,Y STA IMGPTR LDA $0001,Y STA IMGPTRH LDA $0002,Y STA IMGWIDTH LDA $0003,Y STA IMGHEIGHT ; CALCULATE THE START OF THE IMAGE ON ; SCREEN AND PLACE IN SCRPTRH ; ; THIS IS $0200 (START OF SCREEN) + ; SCRX + SCRY * 32 ; ; WE'LL DO THE MULTIPLICATION FIRST ; START BY PLACING SCRY INTO SCRPTR LDA #$00 STA SCRPTRH LDA SCRY STA SCRPTR ; NOW DO 5 LEFT SHIFTS TO MULTIPLY BY 32 LDY #$05 ; NUMBER OF SHIFTS MULT: ASL SCRPTR ; PERFORM 16-BIT LEFT SHIFT ROL SCRPTRH DEY BNE MULT ; NOW ADD THE X VALUE LDA SCRX CLC ADC SCRPTR STA SCRPTR LDA #$00 ADC SCRPTRH STA SCRPTRH ; NOW ADD THE SCREEN BASE ADDRESS OF $0200 ; SINCE THE LOW BYTE IS $00 WE CAN IGNORE IT LDA #$02 CLC ADC SCRPTRH STA SCRPTRH ; NOTE WE COULD HAVE DONE TWO: INC SCRPTRH ; NOW WE HAVE A POINTER TO THE IMAGE IN MEM ; COPY A ROW OF IMAGE DATA COPYROW: LDY #$00 ROWLOOP: LDA (IMGPTR),Y STA (SCRPTR),Y INY CPY IMGWIDTH BNE ROWLOOP ; NOW WE NEED TO ADVANCE TO THE NEXT ROW ; ADD IMGWIDTH TO THE IMGPTR LDA IMGWIDTH CLC ADC IMGPTR STA IMGPTR LDA #$00 ADC IMGPTRH STA IMGPTRH ; ADD 32 TO THE SCRPTR LDA #32 CLC ADC SCRPTR STA SCRPTR LDA #$00 ADC SCRPTRH STA SCRPTRH ; DECREMENT THE LINE COUNT AND SEE IF WE'RE ; DONE DEC IMGHEIGHT BNE COPYROW RTS ; ========================================== ; 5x5 pixel images ; Image of a blue "O" on black background G_O: DCB $00,$0e,$0e,$0e,$00 DCB $0e,$00,$00,$00,$0e DCB $0e,$00,$00,$00,$0e DCB $0e,$00,$00,$00,$0e DCB $00,$0e,$0e,$0e,$00 ; Image of a yellow "X" on a black background G_X: DCB $07,$00,$00,$00,$07 DCB $00,$07,$00,$07,$00 DCB $00,$00,$07,$00,$00 DCB $00,$07,$00,$07,$00 DCB $07,$00,$00,$00,$07 ; Image of a black square G_BLANK: DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00 DCB $00,$00,$00,$00,$00
The result of above code:
I need to follow some requirements from this lab to make the graphic bounces when it reaches the edge of the screen.
- Select a starting location for the graphic where X and Y have different values.
- Select an X increment that is -1 or +1, and a Y increment that is -1 or +1. You can choose to use either a signed byte or some other representation to hold these values.
- Successively move the graphic by adding the X and Y increments to the graphic's X and Y position.
- Make the graphic bounce when it hits the edge of the bitmapped screen, both vertically (when it hits the top/bottom) and horizontally (when it hits the left/right edge).
I will highlight the changes I made in yellow.
;
; draw-image-subroutine.6502
;
; This is a routine that can place an arbitrary
; rectangular image on to the screen at given
; coordinates.
;
; Chris Tyler 2024-09-17
; Licensed under GPLv2+
;
;
; The subroutine is below starting at the
; label "DRAW:"
;
; Test code for our subroutine
; Moves an image diagonally across the screen
; Zero-page variables
define XPOS $20
define YPOS $21
define XDIR $22
define YDIR $23
START:
; Set up the width and height elements of the data structure
LDA #$05
STA $12 ; IMAGE WIDTH
STA $13 ; IMAGE HEIGHT
; Set initial position X=Y=0
LDA #$10
STA XPOS
LDA #$00
STA YPOS
; Set initial direction X+1=X, Y+1=Y
LDA #$01
STA XDIR
STA YDIR
; Main loop for diagonal animation
MAINLOOP:
; Set pointer to the image
; Use G_O or G_X as desired
; The syntax #<LABEL returns the low byte of LABEL
; The syntax #>LABEL returns the high byte of LABEL
LDA #<G_O
STA $10
LDA #>G_O
STA $11
; Place the image on the screen
LDA #$10 ; Address in zeropage of the data structure
LDX XPOS ; X position
LDY YPOS ; Y position
JSR DRAW ; Call the subroutine
; Delay to show the image
LDY #$00
LDX #$50
DELAY:
DEY
BNE DELAY
DEX
BNE DELAY
; Set pointer to the blank graphic
LDA #<G_BLANK
STA $10
LDA #>G_BLANK
STA $11
; Draw the blank graphic to clear the old image
LDA #$10 ; LOCATION OF DATA STRUCTURE
LDX XPOS
LDY YPOS
JSR DRAW
; Increment the position
LDA XPOS
CLC
ADC XDIR
STA XPOS
LDA YPOS
CLC
ADC YDIR
STA YPOS
; Edge Checks
; Left and Right edge check
LDA XPOS
; Check if XPOS reach left edge, compare with #$00
BEQ REACHL
; Check if XPOS reach right edge, compare with #$1b
CMP #$1b
BEQ REACHR
; Top and Bottom edge check
LDA YPOS
; Check if YPOS reach top edge, compare with #$00
BEQ REACHT
; Check if YPOST reach bottom edge, compare with #$1b
CMP #$1b
BEQ REACHB
BNE MAINLOOP
; Change direction
REACHR:
LDA #$FF
STA XDIR
JMP MAINLOOP
REACHL:
LDA #$01
STA XDIR
JMP MAINLOOP
REACHT:
LDA #$01
STA YDIR
JMP MAINLOOP
REACHB:
LDA #$FF
STA YDIR
JMP MAINLOOP
; ==========================================
;
; DRAW :: Subroutine to draw an image on
; the bitmapped display
;
; Entry conditions:
; A - location in zero page of:
; a pointer to the image (2 bytes)
; followed by the image width (1 byte)
; followed by the image height (1 byte)
; X - horizontal location to put the image
; Y - vertical location to put the image
;
; Exit conditions:
; All registers are undefined
;
; Zero-page memory locations
define IMGPTR $A0
define IMGPTRH $A1
define IMGWIDTH $A2
define IMGHEIGHT $A3
define SCRPTR $A4
define SCRPTRH $A5
define SCRX $A6
define SCRY $A7
DRAW:
; SAVE THE X AND Y REG VALUES
STY SCRY
STX SCRX
; GET THE DATA STRUCTURE
TAY
LDA $0000,Y
STA IMGPTR
LDA $0001,Y
STA IMGPTRH
LDA $0002,Y
STA IMGWIDTH
LDA $0003,Y
STA IMGHEIGHT
; CALCULATE THE START OF THE IMAGE ON
; SCREEN AND PLACE IN SCRPTRH
;
; THIS IS $0200 (START OF SCREEN) +
; SCRX + SCRY * 32
;
; WE'LL DO THE MULTIPLICATION FIRST
; START BY PLACING SCRY INTO SCRPTR
LDA #$00
STA SCRPTRH
LDA SCRY
STA SCRPTR
; NOW DO 5 LEFT SHIFTS TO MULTIPLY BY 32
LDY #$05 ; NUMBER OF SHIFTS
MULT:
ASL SCRPTR ; PERFORM 16-BIT LEFT SHIFT
ROL SCRPTRH
DEY
BNE MULT
; NOW ADD THE X VALUE
LDA SCRX
CLC
ADC SCRPTR
STA SCRPTR
LDA #$00
ADC SCRPTRH
STA SCRPTRH
; NOW ADD THE SCREEN BASE ADDRESS OF $0200
; SINCE THE LOW BYTE IS $00 WE CAN IGNORE IT
LDA #$02
CLC
ADC SCRPTRH
STA SCRPTRH
; NOTE WE COULD HAVE DONE TWO: INC SCRPTRH
; NOW WE HAVE A POINTER TO THE IMAGE IN MEM
; COPY A ROW OF IMAGE DATA
COPYROW:
LDY #$00
ROWLOOP:
LDA (IMGPTR),Y
STA (SCRPTR),Y
INY
CPY IMGWIDTH
BNE ROWLOOP
; NOW WE NEED TO ADVANCE TO THE NEXT ROW
; ADD IMGWIDTH TO THE IMGPTR
LDA IMGWIDTH
CLC
ADC IMGPTR
STA IMGPTR
LDA #$00
ADC IMGPTRH
STA IMGPTRH
; ADD 32 TO THE SCRPTR
LDA #32
CLC
ADC SCRPTR
STA SCRPTR
LDA #$00
ADC SCRPTRH
STA SCRPTRH
; DECREMENT THE LINE COUNT AND SEE IF WE'RE
; DONE
DEC IMGHEIGHT
BNE COPYROW
RTS
; ==========================================
; 5x5 pixel images
; Image of a blue "O" on black background
G_O:
DCB $00,$0e,$0e,$0e,$00
DCB $0e,$00,$00,$00,$0e
DCB $0e,$00,$00,$00,$0e
DCB $0e,$00,$00,$00,$0e
DCB $00,$0e,$0e,$0e,$00
; Image of a yellow "X" on a black background
G_X:
DCB $07,$00,$00,$00,$07
DCB $00,$07,$00,$07,$00
DCB $00,$00,$07,$00,$00
DCB $00,$07,$00,$07,$00
DCB $07,$00,$00,$00,$07
; Image of a black square
G_BLANK:
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00
DCB $00,$00,$00,$00,$00I know the edge of the bitmap screen is 31, $1F. However, the graphic is 5 x 5. We need to subtract the graphic size to get last position of XPOS and YPOS when it reaches the right or bottom edge of the screen. So, 31 - 5 is 27, which is $1b. When the graphic reaches the right or bottom edge of the screen, we change the direction variable XDIR or YDIR with value 255, $FF. Every time we add 255 to an 8-bit value, it is equivalent to -1. Correspondingly, when it reaches the left or right edge of the screen, we change XDIR or YDIR to $01.
The result is below:

Comments
Post a Comment